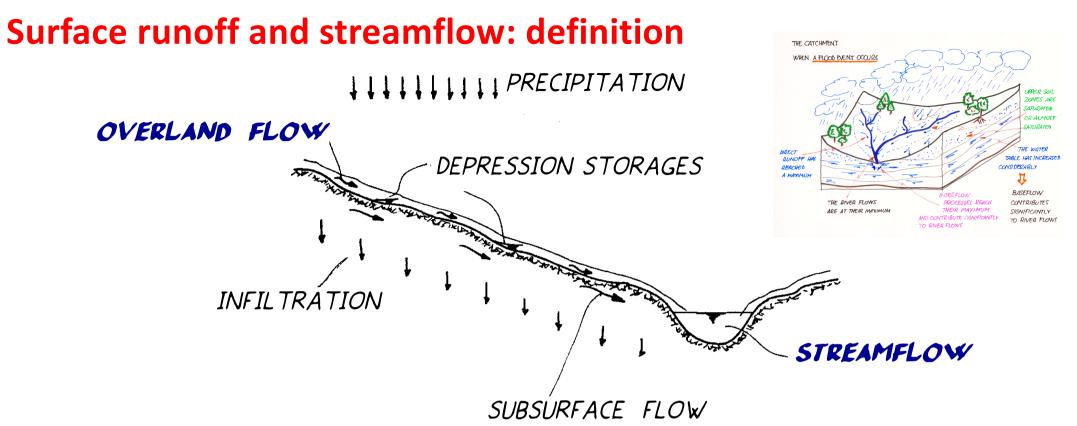

Land processes: surface runoff and streamflow

Land processes: surface runoff and streamflow

Land processes: surface runoff and streamflow


Lecture content

Skript: Ch. IV.6

Ch. VI § 2.4

Surface runoff and streamflow processes

- definition / characterisation
- *influencing factors* (natural vs anthropogenic, flood hydrograph vs streamflow regime)
- measurements and sources of data
- hydrograph analysis
 - annual hydrograph and streamflow regimes
 - flow duration curve
 - event scale hydrograph analysis and baseflow separation

Runoff generation mechanisms lead to

 overland flow = surface runoff → two-dimensional flow occurring on slopes or in ephemeral drainage patterns

Concentration of surface runoff **into permanent natural drainage patterns** (river network) leads to

streamflow (channel flow) → one- and/or two-dimensional flow occurring in river network channels

Surface runoff and streamflow controls

• climatic and hydrologic patterns

- ₲ precipitation
 - type (rain/snow), intensity, duration, space-time variability
- └→ interception
- └→ evapotranspiration
- └_▶ infiltration

• basin characteristics

- └→ topography
- *└*→ *elevation and aspect*
- └→ vegetation cover
- soil با
- └→ geology
- └ drainage network

land use changes

- ₲ forest management

water resources exploitation

- └→ irrigation

climate change

ANTHROPOGENIC

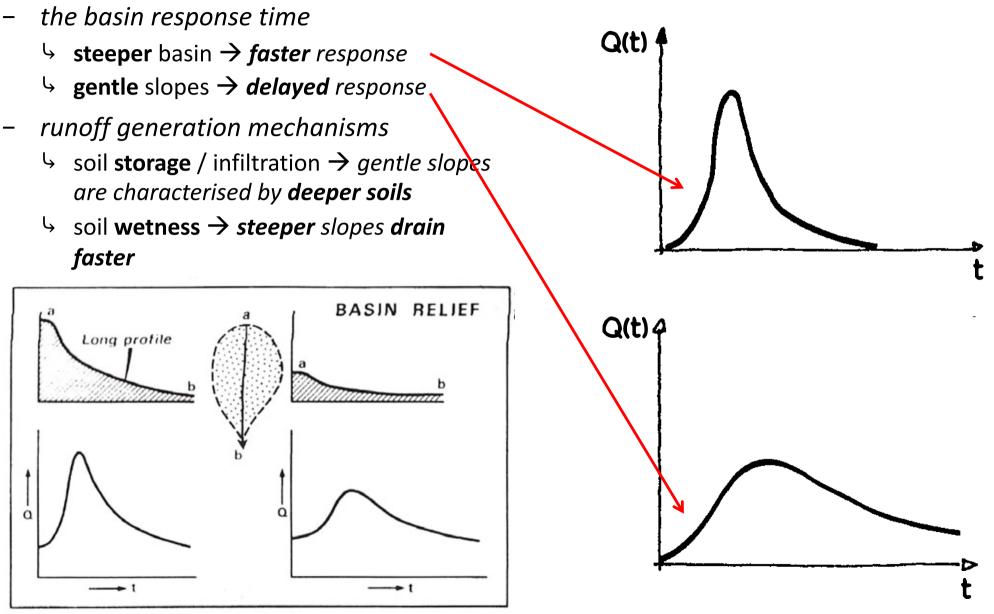
CONTROLS

Basin controls: effects of elevation, aspect and orientation

• elevation controls

- *temperature decreases* at higher elevations
 - \hookrightarrow evapotranspiration decreases \rightarrow *effects on soil water dynamics*
 - the proportion of snowall/rainfall increases → effects on streamflow regime (distribution of flow across seasons)

• aspect controls


- solar radiation and energy balance
 - \hookrightarrow evapotranspiration \rightarrow effects on soil water dynamics
 - \lor vegetation patterns → *effects on infiltration/runoff generation*

• orientation controls

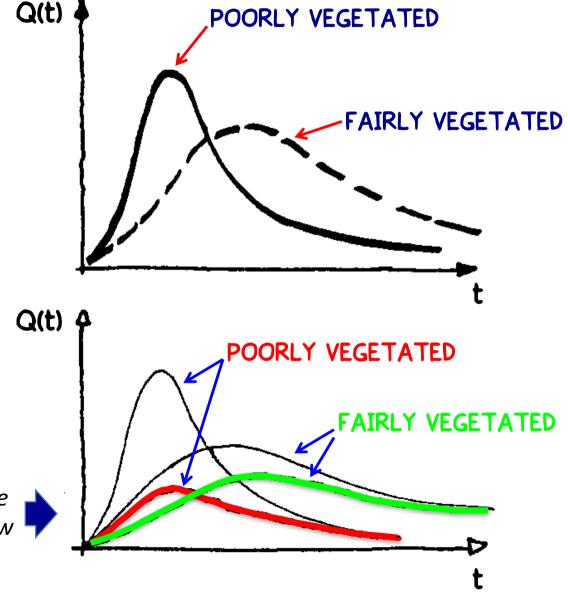
- the exposure to dominant winds and precipitation patterns
 - \backsim rainfall regime \rightarrow effects on soil water dynamics and runoff generation

Basin controls: effects of topography (slope)

slope controls

Basin controls: effects of soil and vegetation cover

vegetation controls


- interception
- evapotranspiration
- infiltration

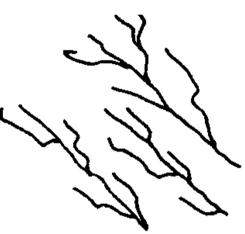
$\mathbf{\Psi}$

runoff generation mechanisms basin storage capacity

NB vegetation, soil type and permeability influence each other

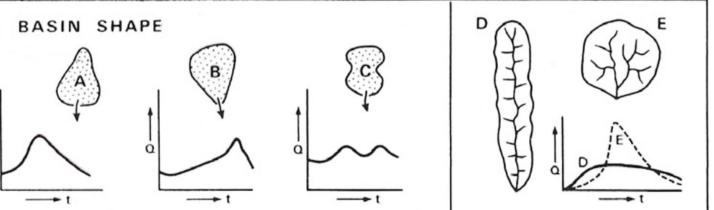
> vegetated basin \rightarrow richer sub-surface flow and baseflow

Basin controls: effects of geology and shape


geology controls the formation of the drainage network structure

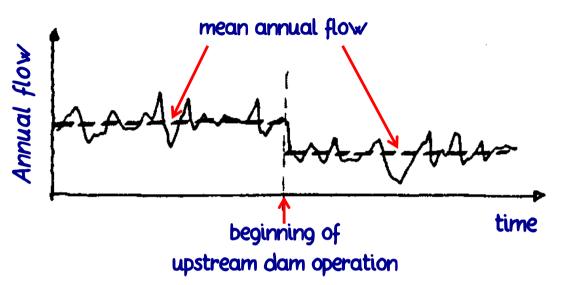
- ullet effects on
- drainage density
 - └ storage capacity of the network
 - runoff/streamflow travel path
- ↓ impact on
- runoff concentration
- basin time response

DENDRITIC NETWORK (most frequent, homogenous geology)



PARALLEL NETWORK (steep slopes, outcropping elongated resistant rock bands)

shape controls the
temporal dynamics of
basin response


 effects on hydrograph

ETH zürich

Anthropogenic controls

- water exploitation through infrastructures modifies streamflow (and sediment transport) regimes and volumes by
 - storage and regulation (hydropower, irrigation)
 - General Structure Gamma St

- basin topography changes due to agricultural practice and urbanisation
 - └→ local and average slope
 - └→ drainage network
- **basin response changes due land use and vegetation cover changes** (e.g. deforestation, forest fires, agriculture, ...)
 - └ infiltration capacity and soil water storage
 - └→ evapotranspiration

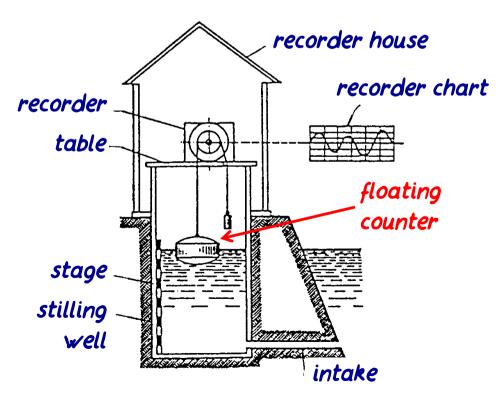
Streamflow measurement

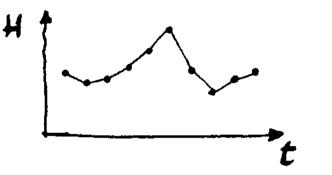
Measurement of *surface runoff* is complex → *not available*

Measurement of *channel flow (streamflow)* is carried out by combining for a *known channel geometry* measurements of

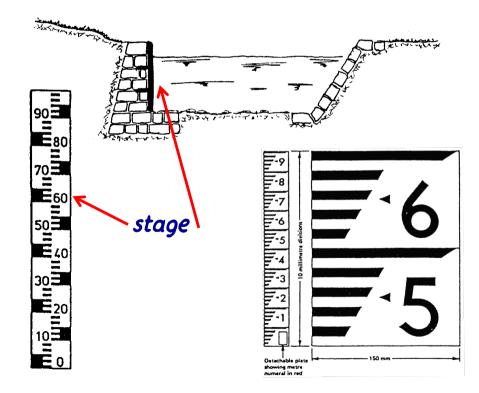
Streamflow, Q(t), is a flux \rightarrow [L]³[T]⁻¹ \rightarrow [m³/s], [m³/day], ...

Data are typically available in the form of

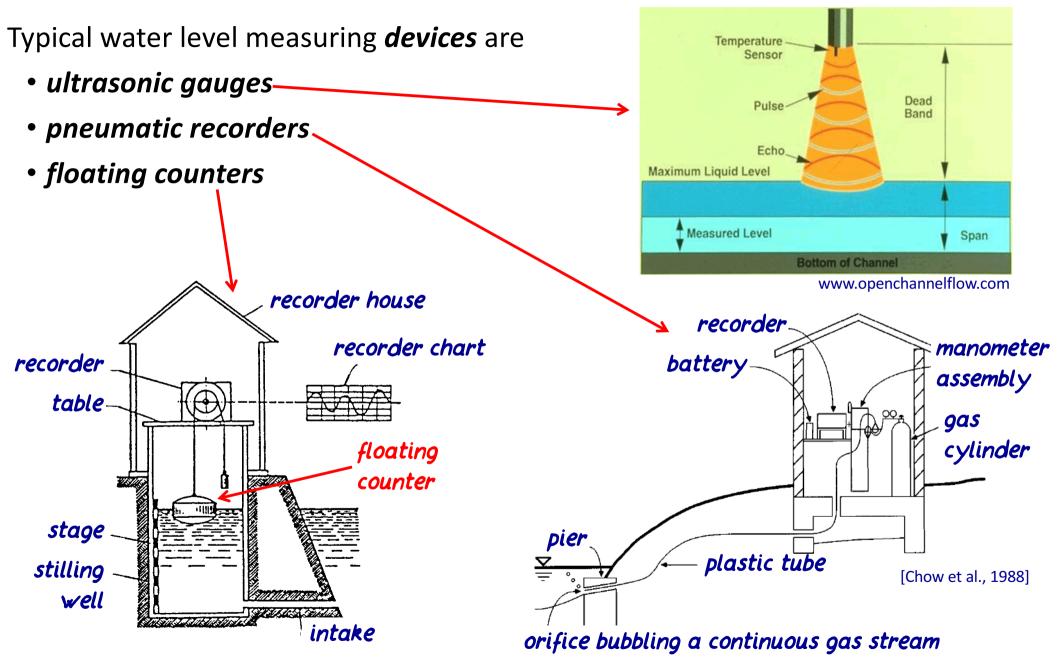

- └→ water levels
- \downarrow *flows (= discharge)* \rightarrow hourly, daily, monthly, and annual flow

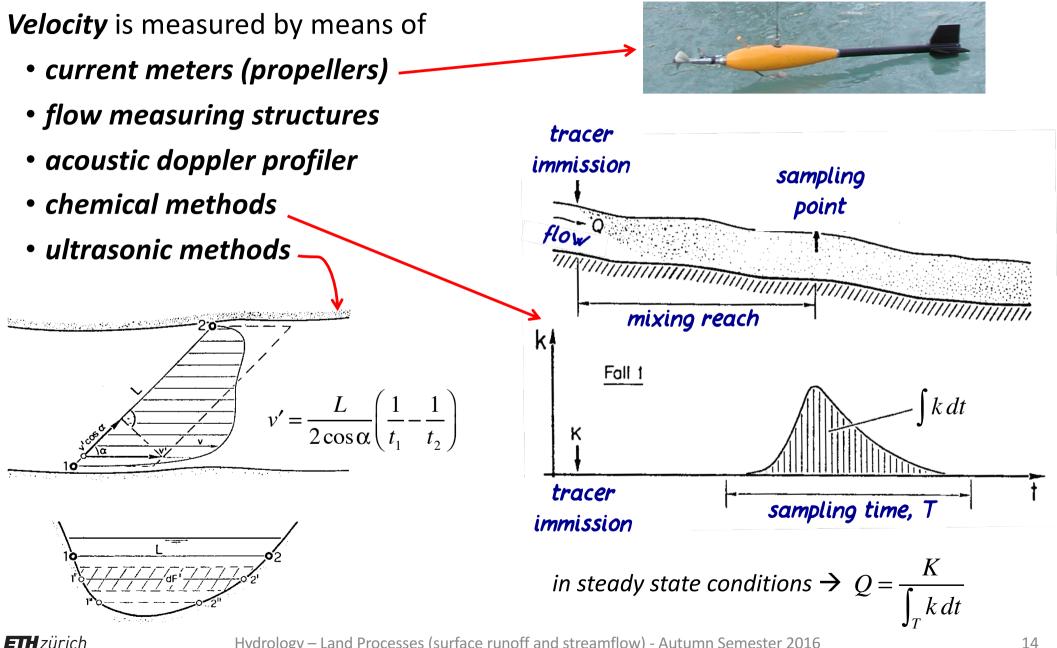

Streamflow measurement: water level (1)

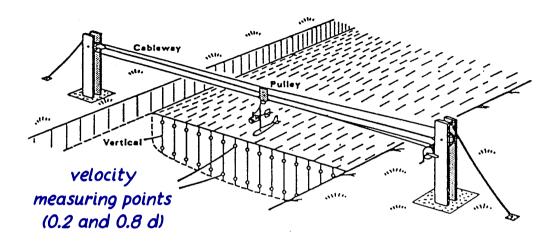
Water level measurements are both

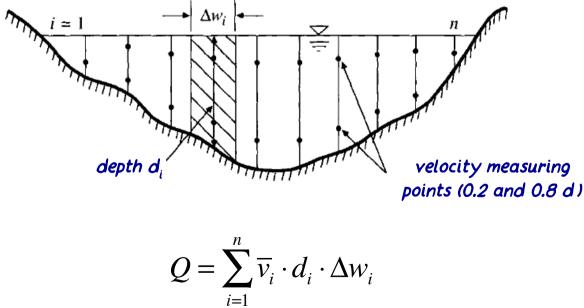


• *continuous* (from automatic devices)



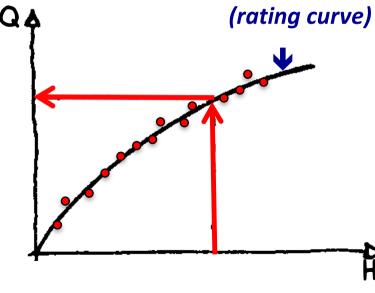

and *discrete* (from manual readings)


Streamflow measurement: water level (2)



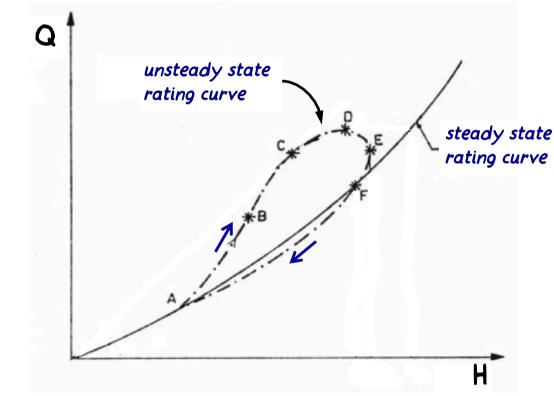
Streamflow measurement: velocity

Streamflow measurement: from velocity and water level to Q

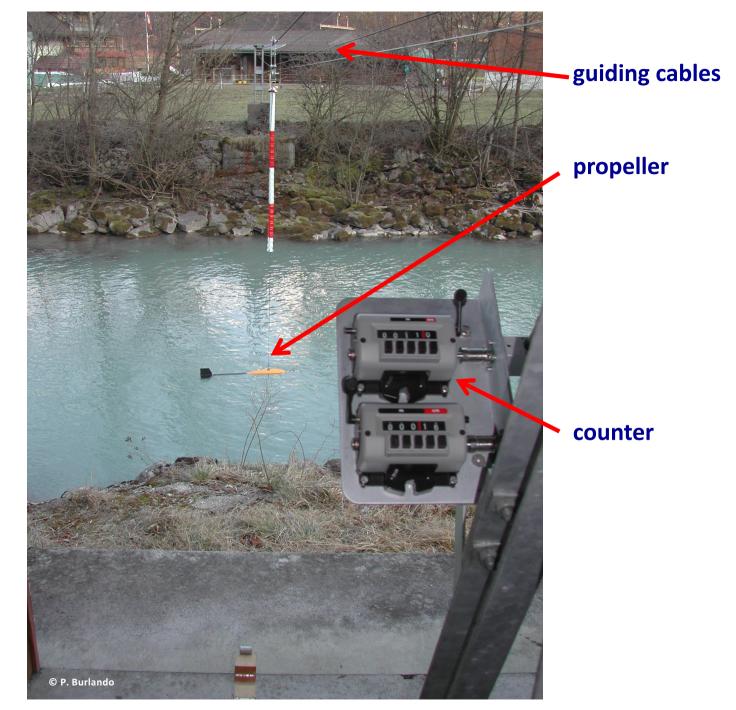


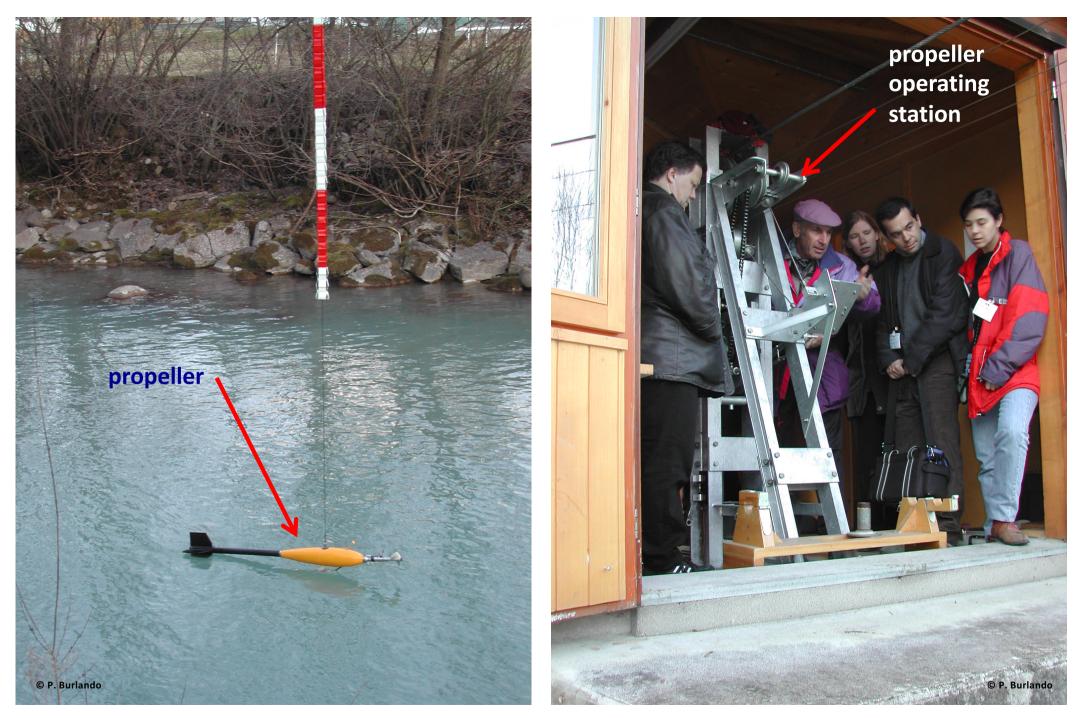
At *n* regular *intervals* along the cross sections:

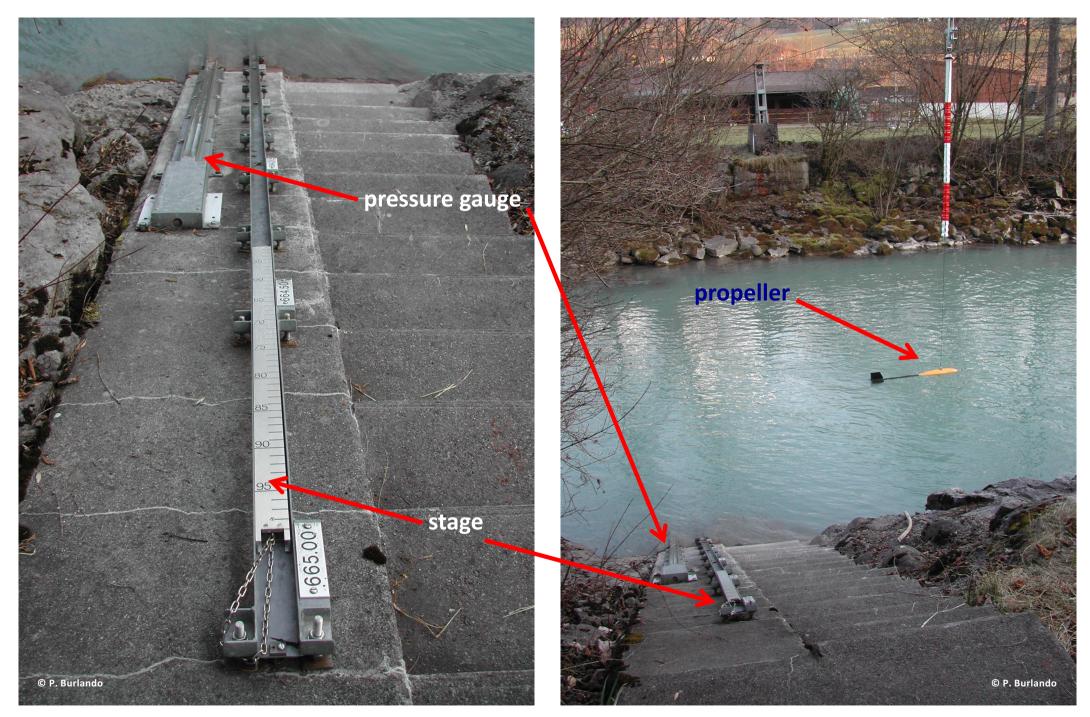
- depth measurement, d_i
- velocity measurements at two depths (0.2d_i and 0.8d_i)
- compute the discharge by integration
- By **repeating measurements** and computation of Q for different depths in **steady state** conditions elaborate the

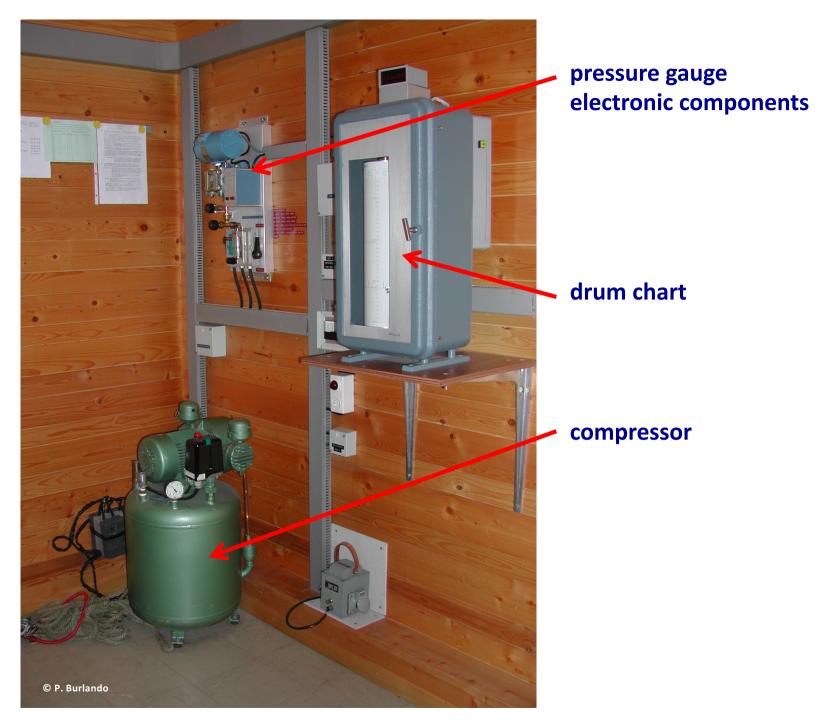

stage-discharge relationship

Rating curve: remarks

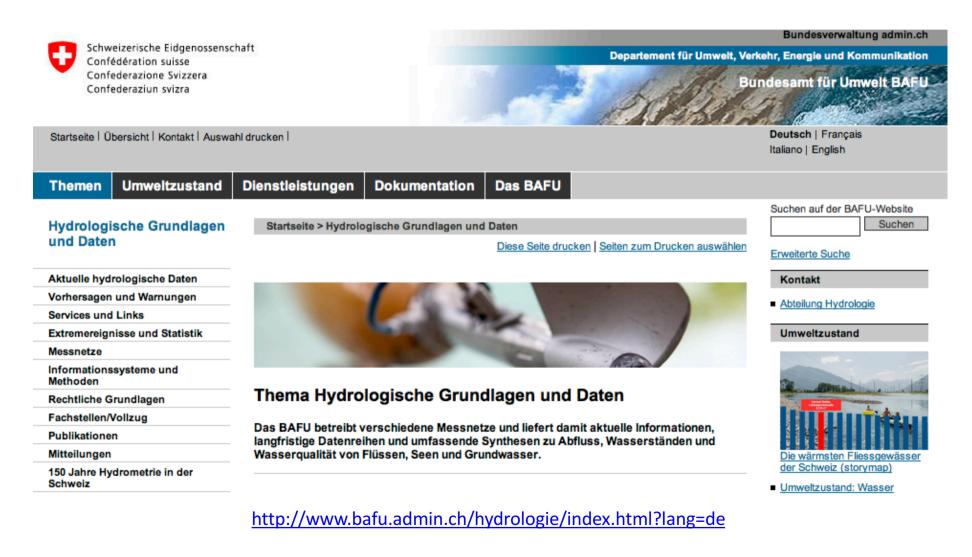

A rating curve is valid as long as


- the cross section does not change
- for steady state conditions
- ↓
- periodical *check* of cross-section and *update* of the rating curve are necessary for high quality data
- measurements in flood conditions are difficult → extrapolation of the curve outside the calibration observation range is dangerous


Discharge measurement station (BAFU)


- water level (pressure gauge)
- velocity (propeller)
- stable cross-section

ETH zürich

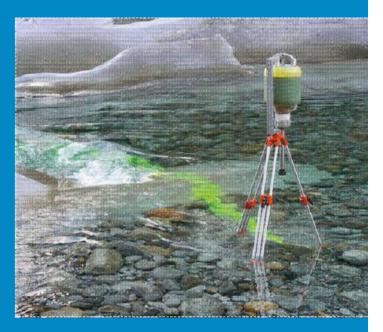


Streamflow data sources

Streamflow measurements are collected / elaborated by hydrologic agencies

• in $CH \rightarrow$ Hydrology Division of the Federal Office for the Environment

		Bundesverwaltung admin.ch
Schweizerische Eidgenossenso Confédération suisse	haft Departement für Umweit, Verk	whr, Energie und Kommunikation
Confederazione Svizzera	Bu	ndesamt für Umwelt BAFU
Confederaziun svizra		2
Startseite Übersicht Kontakt Auswa	hl drucken l	Deutsch Français Italiano English
Themen Umweltzustand	Dienstleistungen Dokumentation Das BAFU	
		Suchen auf der BAFU-Website
Hydrologische Grundlagen	Startseite > Hydrologische Grundlagen und Daten > Services und Links > Hydrologisches Jahr	Suchen
und Daten	Diese Seite drucken Seiten zum Drucken auswählen 🔀 🔤 📑 😫 in 🛛 🛛	Erweiterte Suche
Aktuelle hydrologische Daten		
Vorhersagen und Warnungen	Hydrologisches Jahrbuch	
Services und Links		
HydroWatch	Im hydrologischen Jahrbuch der Schweiz werden die Messdaten aller Stationen, die vom BAFU betrieben werden in Form von Tabellen, Grafiken und Karten veröffentlicht:	
Kantonale Daten	Wasserstände von Seen und Grundwasser, Abflussmengen, Wassertemperatur,	
Internationale Daten	Schwebstoffführung sowie physikalische und chemische Merkmale von Fliessgewässern.	
Meteorologische Daten	Seit seiner ersten Veröffentlichung 1917 wurde dieses Dokument laufend an neue Bedürfnisse	
Hydrologisches Jahrbuch	und neue Datenverarbeitungsverfahren angepasst. Die Jahrbücher können beim BAFU	
Kantonale Jahrbücher	bestellt werden. Seit der Ausgabe 1996 liegt das Jahrbuch jeweils auch im PDF-Format vor.	
Individuelle Datenlieferung	Hydrologisches Jahrbuch der Schweiz 2008 - 2009	
Kalibrieranlage	Publikationen Hydrologie - Ältere Jahrbücher	
Extremereignisse und Statistik	Publikationen Hydrologie - Altere Jahrbucher	
Messnetze	Ältere Jahrgänge ab 1978 können bestellt werden unter der Adresse	
Informationssysteme und Methoden	hydrologie@bafu.admin.ch. Preis pro Band: CHF 60 bis 85.	
Rechtliche Grundlagen	Weitere Informationen:	
Fachstellen/Vollzug		
Publikationen	T Karte der eidgenössischen hydrometrischen Stationen (2008)	
Mitteilungen	12.11.2009 1508 KB PDF	
150 Jahre Hydrometrie in der Schweiz	Verzeichnis der eidgenössischen hydrometrischen Stationen auf Ende 2008	
	12.11.2009 1995 KB PDF	
	Verzeichnis der bis 2008 aufgehobenen Stationen 12.11.2009 2445 KB PDF	
	Hydrologische Jahrbücher anderer Herausgeber:	
	Kantonale Jahrbücher	
	Hydrologischer Atlas der Schweiz HADES	
	Deutsches Gewässerkundliches Jahrbuch	
	Hydrologischer Atlas von Deutschland	
	E Hydrologischer Atlas Österreichs	


Kontakt: hydrologie@bafu.admin.ch Zuletzt aktualisiert am: 07.01.2013

http://www.bafu.admin.ch/hydrologie/01832/01852/index.html?lang=de

ETH zürich

> Umwelt-Wissen > Connaissance de l'environnement > Studi sull'ambiente > Hydrologische Daten > Données hydrologiques > Dati idrologici

> Hydrologisches Jahrbuch der Schweiz
 > Annuaire hydrologique de la Suisse
 > Annuario idrologico della Svizzera
 2008

Schweizerische Eidgenossenschaft Confédération suisse Confederazione Svizzera Confederaziun svizra

Bundesamt für Umwelt BAFU Office fédéral de l'environnement OFEV Ufficio federale dell'ambiente UFAM Uffizi federal d'ambient UFAM

Dritter Teil

Abflüsse

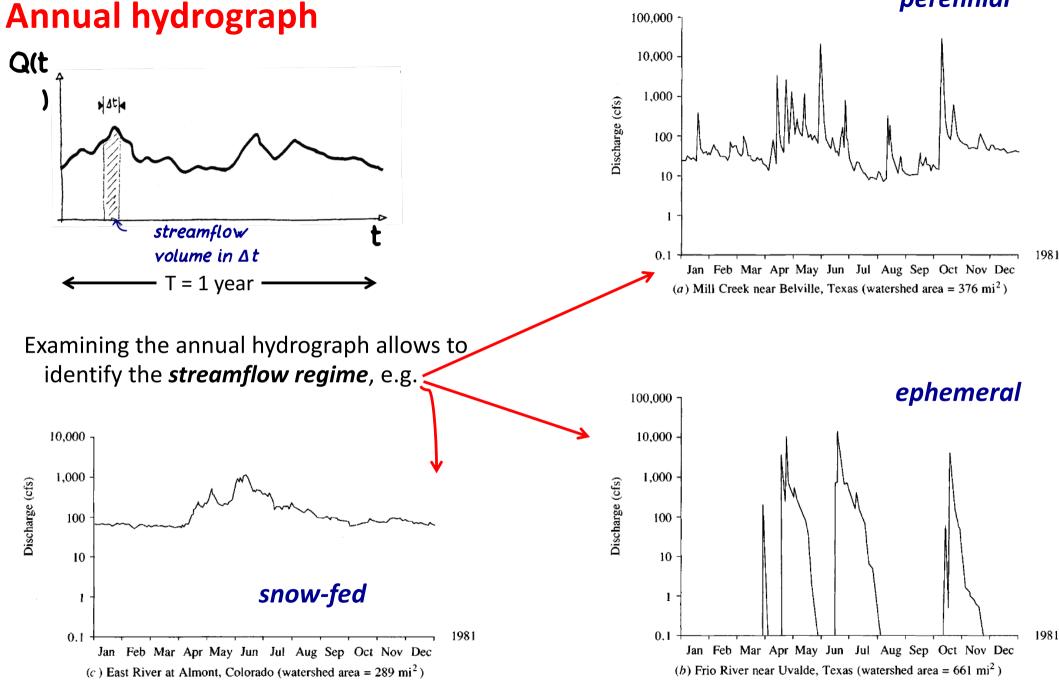
Troisième partie

Débits

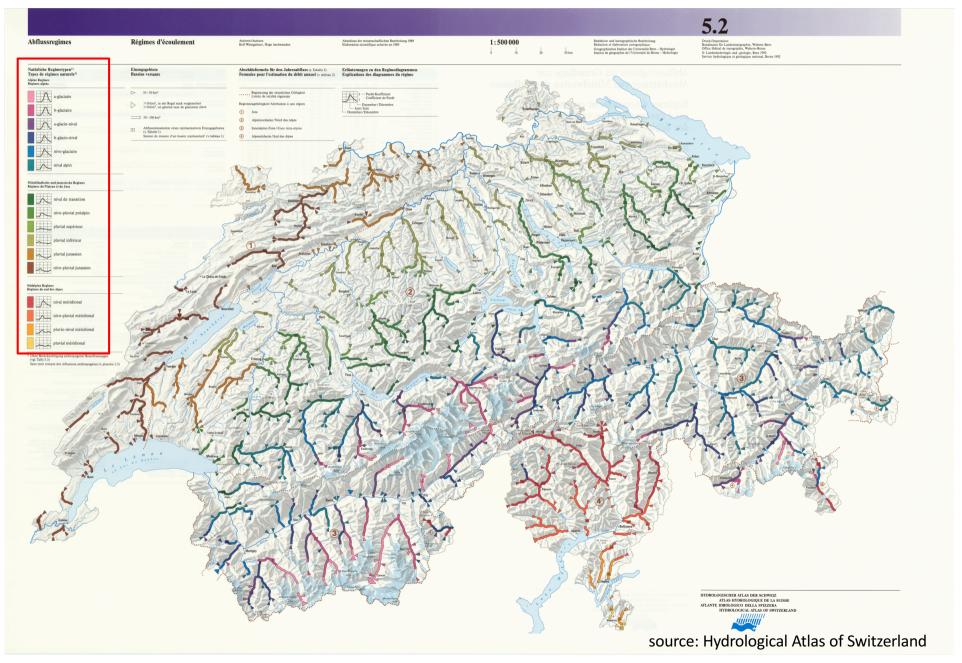
Terza parte

Deflussi

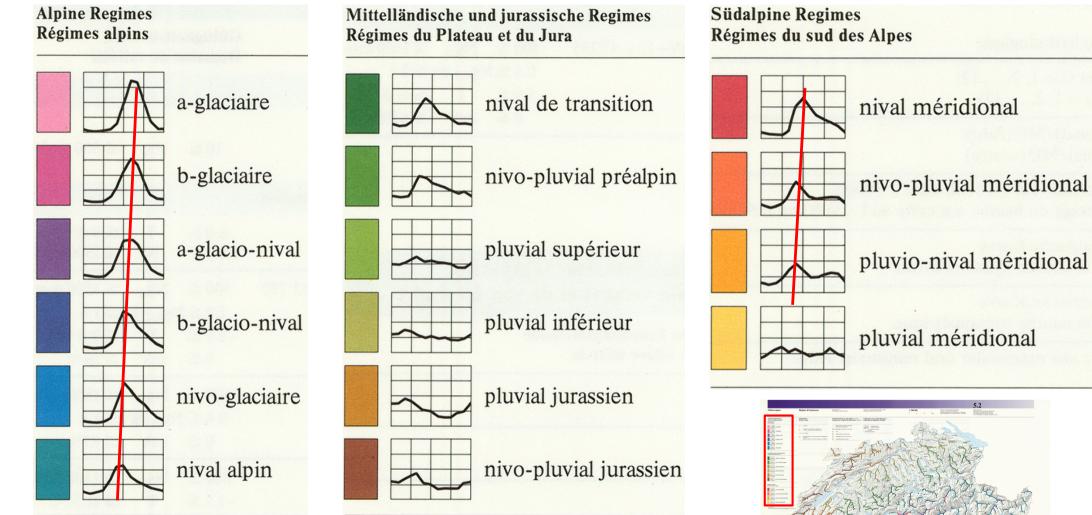
daily data


Abfluss		Thur - Andelfingen										LH 2044		
Débit Portata		KoordinatenHöheFlächeMittlere HöheVergletscherungCoordonnées693510 / 272500Altitude 356 m ü.M.Surface1696 km²Altitude moyenne770 m ü.M.Extension glacier- %CoordinateAltitudineSuperficieAltitudine media770 m ü.M.Extension glacier- %												- %
2008		Jan./Janv. Genn.	Febr./Févr. Febbr.	März/Mars Marzo	April/Avril Aprile	Mai/Mai Maggio	Juni/Juin Giugno	Juli/Juillet Luglio	Aug./Août Agosto	Sept./Sept. Sett.	Okt./Oct. Ott.	Nov./Nov. Nov.	Dez./Déc. Dic.	
Tagesmittel	1 2 3 4 5	15.1 14.1 12.8 - 13.0 15.0	18.8 27.1 28.0 22.0 22.3	87.6 108 74.5 57.9 45.3	61.6 60.0 73.4 69.5 58.7	65.9 + 52.3 47.6 46.8 47.7	32.9 23.7 30.2 32.2 72.7	16.4 14.2 14.3 45.1 25.3	22.4 34.1 25.3 19.2 17.8	17.1 16.5 14.0 28.9 26.3	11.4 11.2 11.3 29.2 27.6	74.9 75.7 55.6 41.8 32.8	22.5 30.8 31.6 26.9 33.2	1 2 3 4 5
Moyenne journalière Media giornaliera	6 7 8 9 10	48.0 127 + 126 59.9 43.3	24.9 55.2 + 40.2 30.9 24.7	36.8 31.4 28.1 24.7 - 29.3	75.9 85.8 62.1 49.0 - 67.2	44.8 41.6 39.4 38.5 38.7	46.9 52.1 37.2 30.9 27.0	16.0 29.0 30.4 20.8 15.4	22.3 18.5 24.1 18.5 14.0	16.8 74.0 86.6 40.6 27.4	20.8 24.2 28.0 19.8 15.7	27.0 23.2 21.9 19.1 17.5	43.9 56.7 44.9 35.5 32.2	6 7 8 9 10
m³/s	11 12 13 14 15	36.6 33.4 40.2 33.2 29.4	21.9 20.4 18.6 17.1 16.5	47.1 98.6 188 + 90.3 94.4	82.3 106 71.3 58.1 59.1	38.4 37.5 34.6 31.8 31.9	61.2 65.0 114 + 82.2 48.0	13.3 - 31.0 98.0 242 + 141	12.5 - 20.8 36.5 27.7 72.5	21.4 19.7 42.0 239 + 127	14.0 12.8 11.5 11.6 10.7 -	16.8 16.4 20.2 21.8 18.0	30.3 28.2 27.3 25.6 27.4	11 12 13 14 15
	16 17 18 19 20	26.1 25.3 31.3 47.5 52.6	15.6 14.4 13.6 13.7 13.3 -	65.8 81.6 120 68.7 49.4	69.6 61.5 53.4 54.7 55.7	37.1 32.1 39.0 53.5 36.7	36.5 35.6 36.7 34.4 27.1	64.2 103 141 66.9 70.3	370 + 103 58.3 38.6 88.4	83.9 52.3 41.8 30.3 25.7	16.7 157 + 66.6 37.8 27.6	15.6 - 18.7 31.3 22.5 18.4	30.4 31.0 28.7 26.8 54.6	16 17 18 19 20
+Maximum	21 22 23 24 25	36.7 47.0 75.1 42.2 34.9	13.4 16.7 21.2 19.2 21.4	55.7 79.5 60.3 48.5 45.0	56.8 379 + 347 175 126	30.3 25.0 22.2 21.3 23.8	23.8 20.7 20.0 19.7 18.7	123 61.1 40.9 31.9 26.3	48.2 34.3 55.5 78.2 50.3	21.4 19.5 18.5 16.4 15.3	23.0 18.4 22.7 20.9 17.0	39.6 128 + 51.0 39.8 36.2	199 + 169 92.6 67.2 51.0	21 22 23 24 25
- Minimum Minimo	26 27 28 29 30 31	30.9 25.2 23.8 21.7 20.0 20.0	22.9 33.4 48.8 30.2	42.3 43.2 41.7 51.3 80.1 83.6	105 82.2 73.5 96.6 82.4	23.2 23.6 25.4 26.5 26.8 30.0	19.1 21.4 16.8 14.9 - 16.1	21.9 19.2 21.0 17.9 21.1 29.9	34.2 26.6 22.3 19.4 17.2 15.2	14.5 13.2 12.1 11.9 11.5 -	15.1 14.2 21.4 70.9 99.5 76.8	31.5 29.6 25.6 25.2 22.1	41.8 34.4 28.7 25.1 22.8 21.3 -	26 27 28 29 30 31
Monatsmittel Moyenne mensuelle Media mensile		39.0	23.7 -	66.4	95.3 +	35.9	37.2	52.0	46.6	39.5	31.1	33.9	45.9	m³/s
Maximum/Massimo Spitze/Pointe/Punta Datum/Date/Data		236 7.	91.2 27.	293 13.	675 + 22.	75.3 - 1.	210 13.	405 14.	564 16.	348 14.	251 17.	265 22.	300 21.	m³/s
Jahresmittel/Moyenne annuelle/Media annua 45.6 m³/s														

ETH zürich

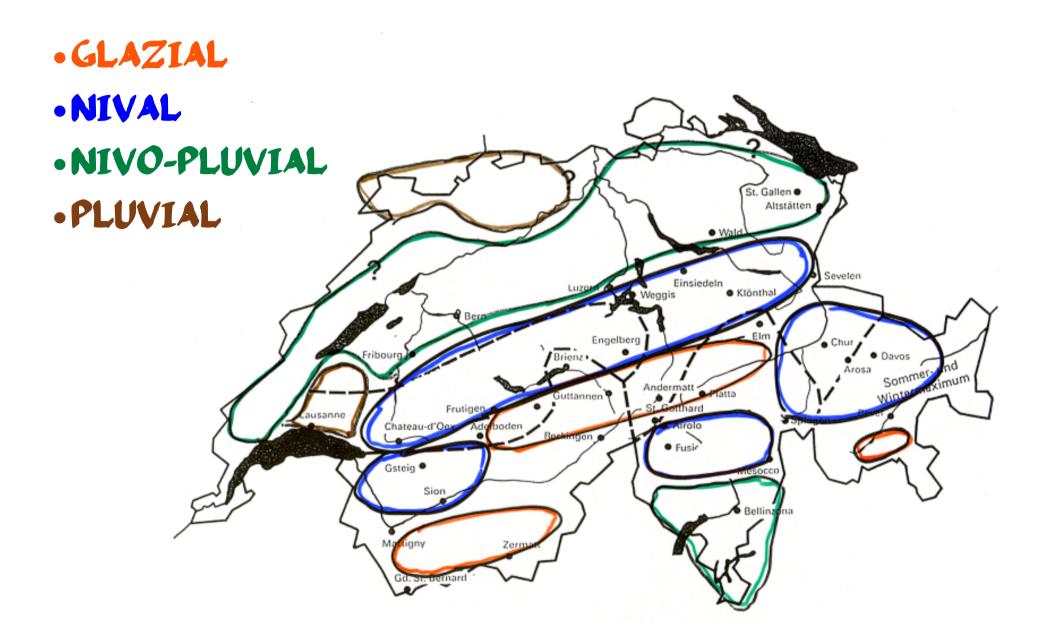

Streamflow regimes

perennial



ETH zürich

Streamflow regimes in Switzerland



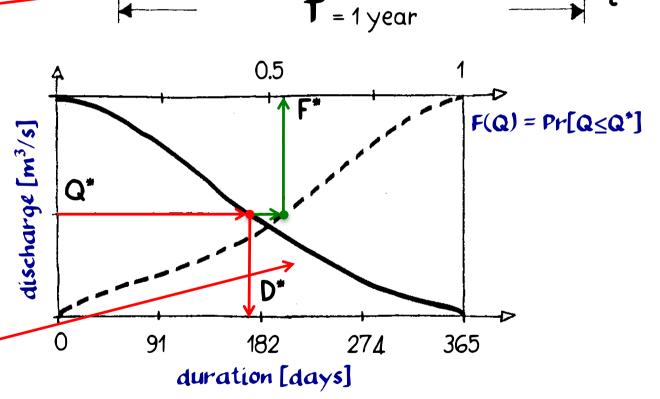
Streamflow regimes in Switzerland

nivo-pluvial méridional

Streamflow (macro)regimes in Switzerland

Flow duration curve

It provides the *percentage of time that the flow in a stream is likely to equal or exceed some specified value of interest*.

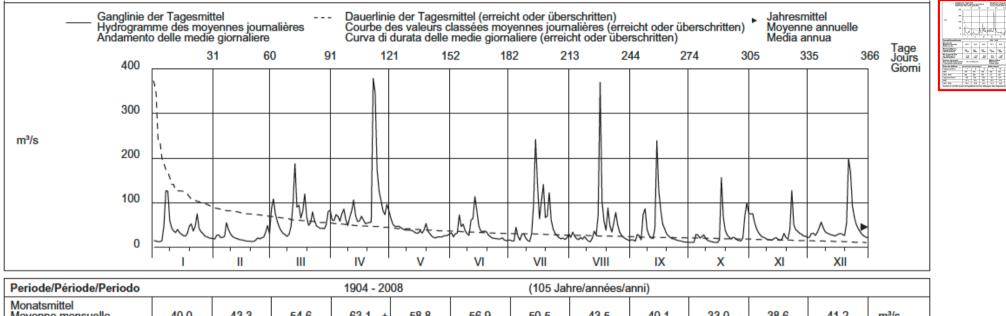

└→ frequency information

Duration of $Q^* \rightarrow \sum_{i} \tau_i$

The *construction of the curve* is

frequently done using daily data:

- 1. for each year **sort** the **daily data** in descending order
 - ^L highest flow exceeded for 1 day, 2nd highest for 2 days, ..., lowest for 365 days.
- 2. compute the **average** of ranked flows for each ranking position
- 3. plot the **flow duration curve** using the averaged flow for each ranking position



 $Pr[Q \ge Q^*] = D(Q^*)/T = D^*/T; Pr[Q \le Q^*] = F(Q) = 1 - D^*/T$

Q(t)

Q*

daily data – flow duration curve

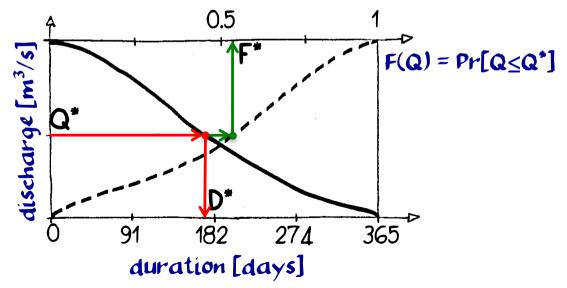
40.0	43.3	54.6	63.1 +	58.8	56.9	50.5	43.5	40.1	33.0 -	38.6	41.2	m³/s
808 1914	850 1990	630 1978	675 2008	1130 + 1999	1100 1910	730 1977	1060 1978	780 2002	600 - 1935 -	720 1944	892 1918	m³/s
4.60 1954	6.42 1950	6.40 1932	10.9 + 1972	5.90 1934	5.40 1934	4.70 1949	2.75 1949	2.24 - 1947	3.30 1949	3.83 1947	4.22 1948	m³/s
Grösstes Jahresmittel Moy. annuelle la plus grande La più grande media annua 76.4 (1910) m³/s				en	47.0 m ³ /s Moy. a			nnuelle la plu	us petite	23.3 (1921) m³/s		
auer der Abflüsse (erreicht oder überschritten)				n) Débits classés			(atteintes ou dépassées)			(raggiunte o sorpassate)		
1	3	6	9	18	36	55	73	91	114	137	160	
379	347	199	169	123	85.8	73.4	61.6	55.2	47.1	40.2	34.9	m³/s
382	260	202	172	130	95.7	77.5	66.1	57.6	49.3	42.6	37.3	m³/s
182	205	228	251	274	292	310	329	347	356	362	365	
31.3	28.7	26.1	23.2	21.4	19.7	17.9	15.7	14.0	12.8	11.5	11.2	m³/s
33.0	28.9	25.3	21.9	18.9	16.7	14.4	12.0	9.32	7.60	5.87	3.83	m³/s
	808 1914 4.60 1954 76.4 (* rreicht oder 1 379 382 182 31.3	808 1914 850 1990 4.60 1954 6.42 1950 76.4 (1910) m³/s rreicht oder überschritter 1 3 379 347 382 260 182 205 31.3 28.7	808 1914 850 1990 630 1978 4,60 1954 6,42 1950 6,40 1932 76.4 (1910) m³/s rreicht oder überschritten) 1 3 6 379 347 199 382 260 202 182 205 228 31.3 28.7 26.1	808 1914 850 1990 630 1978 675 2008 4.60 1954 6.42 1950 6.40 1932 10.9 + 1972 + 76.4 (1910) m³/s Mittlerer A Débit moy Portata me rreicht oder überschritten) Débits class 1 3 6 9 379 347 199 169 382 260 202 172 182 205 228 251 31.3 28.7 26.1 23.2	808 1914 850 1990 630 1978 675 2008 1130 1999 + 4.60 1954 6.42 1950 6.40 1932 10.9 1972 5.90 1934 76.4 (1910) m³/s Mittlerer Abfluss Débits classés rreicht oder überschritten) Débits classés 1 3 6 9 18 379 347 199 169 123 382 260 202 172 130 182 205 228 251 274 31.3 28.7 26.1 23.2 21.4	808 1914 850 1990 630 1978 675 2008 1130 1999+ 1100 1910 4.60 1954 6.42 1950 6.40 1932 10.9 1972+ 5.90 1934 5.40 1934 76.4 (1910) m³/s $Mittlerer$ Abfluss Débit moyen Portata media 47.0 reicht oder überschritten) $Débits$ classés 1836(atteintest) 1 3 86 6 9 9 18 36 379 822 347 199 169 169 123 85.8 85.8 382 822 260 202 202 172 130 25.7 95.7 292 182 31.3 28.7 26.1 23.2 21.4 21.4 19.7	808 1914 850 1990 630 1978 675 2008 1130 1999 1100 1910 730 1977 4.60 1954 6.42 1950 6.40 1932 10.9 1972 5.90 1934 5.40 1934 4.70 1949 76.4 (1910) m³/s $Mittlerer Abfluss$ Débit moyen Portata media 47.0 m³/sMittlerer Abfluss Débit moyen Portata media 76.4 (1910) m³/s $Débits classés$ (atteintes ou dépassa 1 3 6 9 18 36 55 379 347 199 169 123 85.8 73.4 382 260 202 172 130 95.7 77.5 182 205 228 251 274 292 310 31.3 28.7 26.1 23.2 21.4 19.7 17.9	808 1914 850 1990 630 1978 675 2008 1130 1999 1100 1910 730 1977 1060 1978 4.60 1954 6.42 1950 6.40 1932 10.9 1972 5.90 1934 5.40 1934 4.70 1949 2.75 1949 76.4 (1910) m³/sMittlerer Abfluss Débit moyen Portata media 47.0 m³/s X_{1949} Kleinster Moy. ar La più prreicht oder überschritten)Débits classés 1999(atteintes ou dépassées)D136918365573379347199169123 85.8 73.4 61.6 38226020217213095.777.5 66.1 18220522825127429231032931.328.726.123.221.419.717.915.7	808 1914 850 1990 630 1978 675 2008 1130 1999 1100 1910 730 1977 1060 1978 780 2002 4.60 1954 6.42 1950 6.40 1932 10.9 1972 5.90 1934 5.40 1934 4.70 1949 2.75 1949 2.24 1947 76.4 (1910) m³/sMittlerer Abfluss Débit moyen Portata media 47.0 m³/sKleinstes Jahresmit Moy: annuelle la plu La più piccola media 76.4 (1910) m³/sDébits classés(atteintes ou dépassés) \mathbf{V} -tat delle13691836557391379347199169123 85.8 73.4 61.6 55.2 38226020217213095.7 77.5 66.1 57.6 182205228251274292 310 329 347 31.328.726.123.221.419.717.915.714.0	808 1914 850 1990 630 1978 675 2008 1130 1999 1100 1910 730 1977 1060 1978 780 2002 600 1935 4.60 1954 6.42 1950 6.40 1932 10.9 1972 5.90 1934 5.40 1934 4.70 1949 2.75 1949 2.24 1947 3.30 1947 76.4 (1910) m³/s 10.9 1932 10.9 1972 8.50 1932 47.0 1934 87.0 1934 87.0 1949 <td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td> <td>$\begin{array}{ c c c c c c c c c c c c c c c c c c c$</td>	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$

Seit dem 25. Juli 2001 wurden die Pegelstände an einem Hilfspegel in Alten aufgezeichnet.

Hydrology – Land Processes (surface runoff and streamflow) - Autumn Semester 2016

Miles like

Infiltration *example of application of knowledge*


Engineering Problem:

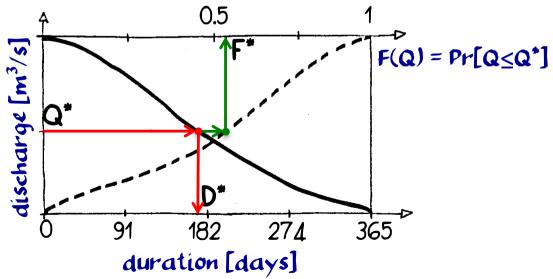
Settimate the amount of time (duration) for which water can be abstracted from a river to satisfy the demand of a water supply system

Solution

└→ Compute the flow duration curve from daily historical streamflow observations and read on the plot the duration corresponding to the water demand

Method

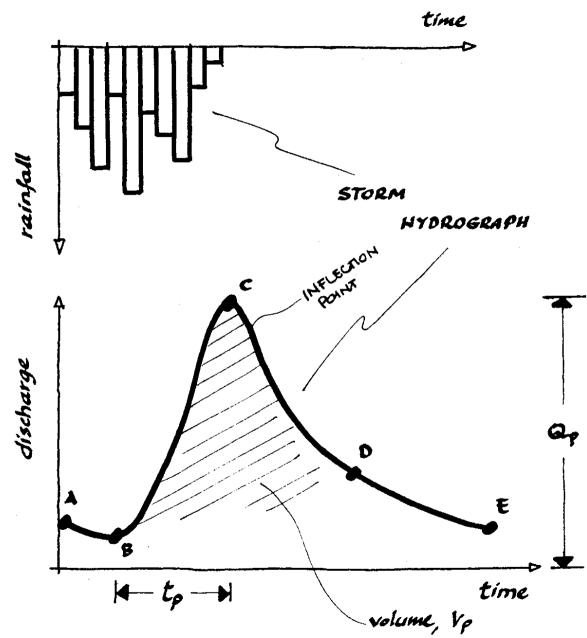
Infiltration *example of application of knowledge*


Engineering Problem:

Settimate the amount of time (duration) for which water can be abstracted from a river to satisfy the demand of a run-of-river hydropower system

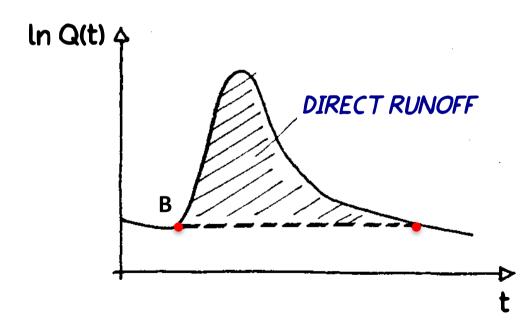
Solution

 Compute the flow duration curve from daily historical streamflow observations and read on the plot the duration corresponding to minimum flow required by the hydropwer system


Method

Flood hydrograph analysis

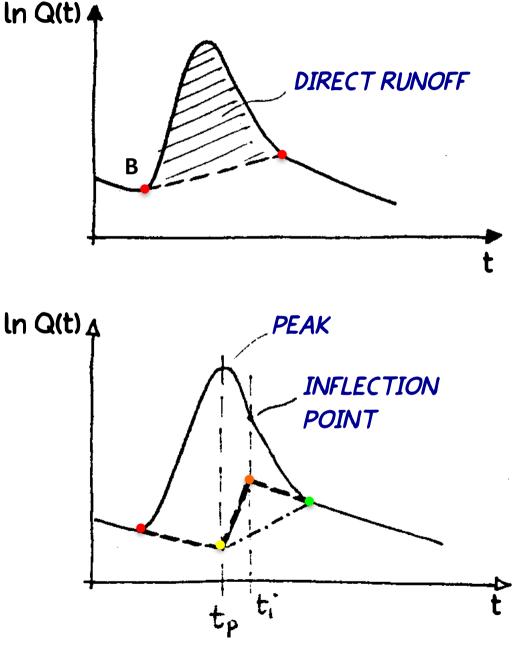
Flood hydrograph analysis - nomenclature


hydrograph components

- $AB \rightarrow$ baseflow recession
- $BC \rightarrow$ rising limb
- $\mathcal{CD} \rightarrow$ falling limb
- $DE \rightarrow$ baseflow recession
- $t_{\rho} \rightarrow \text{rime to peak}$
- − $V_{\rm F}$ → flood volume
- $\mathbf{Q}_{\mathbf{p}} \rightarrow \text{flood peak}$

The analysis is conveniently carried out in a semi-log plane (InQ-t), where the baseflow recession shows a linear behaviour

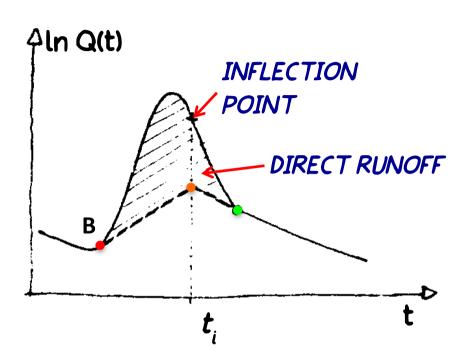
Flood hydrograph analysis: baseflow separation (1)


- Observed streamflow in rivers is composed of three components: *surface runoff, interflow and baseflow*
- to quantify the contribution of surface runoff to the streamflow it is necessary to separate the baseflow and interflow
 - \lor baseflow separation methods \rightarrow empirical methods
 - *NB 1* these methods consider **baseflow** and **interflow** as one single component
 - NB 2 surface runoff computed from baseflow separation can be used for calibration/verification of runoff generation models (e.g. Φ-index)

STRAIGHT LINE METHOD

- a horizontal line is drawn from the point at which surface runoff begins, B, to the intersection with the recession limb.
- does not account for interflow
- applicable to **ephemeral streams**

Baseflow separation (2)


STRAIGHT (INCLINED) LINE METHOD

- an **inclined line** is **drawn from** the beginning point of the surface runoff, **B**, with the point on the recession limb of the hydrograph where normal baseflow resumes.
- accounts implicitely for **interflow** (inclined straight line)
- applicable to (small) forested watersheds in humid regions

VARIABLE SLOPE METHOD

- **extrapolation (forward)** of the baseflow recession curve up to $t_p \rightarrow \bullet$
- **extrapolation (backward)** of the baseflow recession curve up to $t_i \rightarrow \bullet \bullet \bullet$
- accounts implicitely for interflow
- applicable to systems with threshold driven interflow

Baseflow separation: normal depletion curve

$$S(t) = k Q(t) (\bullet \bullet)$$

$$Q(t)$$

combining (••) with the continuity equation -Q(t)=dS(t)/dt we obtain (•)

- *it is based on the evidence of the* **exponential decay** *of the recession limb*
 - └→ linear reservoir analogue

$$Q(t) = Q_0 \cdot e^{-(t-t_0)/k} \quad (\bullet)$$

where Q_0 is the flow at time t_0 and k is an exponential decay constant having the dimensions of time.

- the equation is linearized in a semi-log ($\ln Q(t) t$) plane
- two inclined lines can be drawn
 - └→ forward from the beginning point of the surface runoff, B, to the time of the inflection point, and _____
 - backward from the point on the recession limb of the hydrograph where normal baseflow resumes to the time of the inflection point.
- the estimation of k is obtained by fitting the linearized form of (•) to the flow values of the recession limb
- accounts implicitly for interflow (inclined straight line)
- applicable to watersheds where interflow is controlled by soil storage